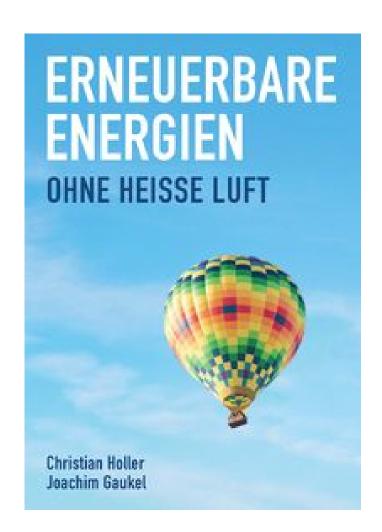


Können wir unseren Energiebedarf aus regenerativen Energien decken?

Ein Unterrichtsvorschlag für die Sek I

Michael Kahnt
Universität Osnabrück
Graf-Stauffenberg Gymnasium


Gliederung

- Idee, Motivation und Hintergründe
- Vorstellung von Elementen der Unterrichtseinheit "Ertrag regenerativen Energien"
- Erfahrungen, offene Fragen, Ausblick

Idee zum Unterricht: ein Buch

- Erläuterung von physikalischen und technischen Grundlagen der regenerativen Energien:
 - Photovoltaik
 - Windenergie
 - Wasserenergie
 - Biomasse
 - Geothermie
- Können wir unseren Energiebedarf in Deutschland durch die maximal mögliche Ausnutzung von regenerativen Energien decken?
- Treffen plausibler Annahmen und Abschätzungen, "einfache" Rechnungen im Stil von Fermi-Aufgaben.

(Primär-) Energiebedarf in Deutschland im Jahr 2023

10 630 000 000 000 000 000 Joule

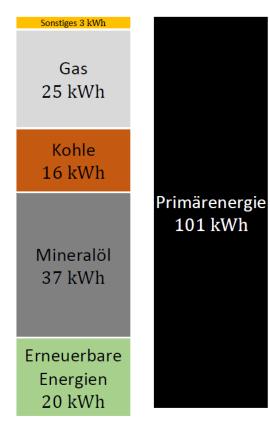
$$= 10,63 \cdot 10^{18} J$$

= 10,63 EJ

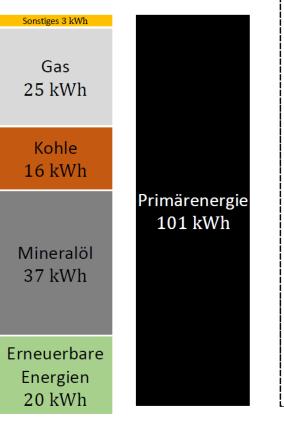
(Primär-) Energiebedarf in Deutschland im Jahr 2023

10 630 000 000 000 000 000 Joule

- 1. Wir beziehen die Energiemenge auf einen Tag.
- 2. Wir beziehen die Energiemenge auf eine Person (Deutschland: ca. 80 Mio Einwohner)
- 3. Wir stellen die Energiemenge in der Einheit kWh dar (1 kWh = 3 600 000 J)


101 kWh pro Tag und pro Person

 Darstellung der Energiebeträge grundsätzlich in "kWh pro Tag und pro Person"


 Darstellung der Energiebeträge grundsätzlich in "kWh pro Tag und pro Person"

Primärenergie 2023 nach Energieträgern

- Darstellung der Energiebeträge grundsätzlich in "kWh pro Tag und pro Person"
- Können wir unseren Energiebedarf in Deutschland durch die maximal mögliche Ausnutzung von regenerativen Energien decken?

Primärenergie

2023 nach

Energieträgern

Möglicher Ertrag der regenerativen Energien

- Darstellung des Energiebedarfs in Deutschland als "kWh pro Tag und pro Person"
- Können wir unseren Energiebedarf in Deutschland durch die maximal mögliche Ausnutzung von regenerativen Energien decken?
 - Photovoltaik
 - Windenergie
 - Wasserenergie
 - Biomasse
 - Geothermie

Gas 25 kWh

Kohle 16 kWh

Mineralöl 37 kWh

Erneuerbare Energien 20 kWh

Primärenergie 2023 nach Energieträgern der regenerativen Energien

Möglicher Ertrag

Darstellung des Energiebedarfs in Deutschland als

。 〇

Halbleiter

 $E_{pot} = m \cdot g \cdot h$

und pro Person" Generator

 $E_{kin} = \frac{1}{2} \cdot m \cdot v^2$ iseren Enerci die maximal mögliche A Wirkungsgrad,

EnergQn decken?

- Photôvoltaik
- Windenergie

- Geothermie

- WasserenerGe
- Biomasse

Innere Energie

Umgang mit kWh

chland durch

∤rativen

Gas 25 kWh

Kohle 16 kWh

Mineralöl 37 kWh

Erneuerbare Energien 20 kWh

2023 nach Energieträgern

Möglicher Ertrag der regenerativen Energien

Primärenergie

Idee: Inhalt des Buches als roter Faden für einen Unterricht in Klasse 9/10

KC Gy

Fachwissen		Erkenntnisgewinnung		Kommunikation		Bewertung	
	Die Schülerinnen und Schüler						
 benutzen die Energiestromstärke/Leistung P als Maß dafür wie schnell Energie übertragen wird bestimmen die in elektrischen Systemen umgesetzte Energie unterscheiden mechanische Energieübertragung (Arbeit) von thermischer (Wärme) an ausgewählten Beispielen. 	•	verwenden in diesem Zusam- menhang Größen und Einheiten korrekt. verwenden in diesem Zusam- menhang die Einheiten 1 J und 1 kWh. untersuchen auf diese Weise be- wirkte Energieänderungen expe- rimentell.	•	entnehmen dazu Informationen aus Fachbuch und Formelsamm- lung. unterscheiden dabei zwischen alltagssprachlicher und fach- sprachlicher Beschreibung.	•	vergleichen und bewerten all- tagsrelevante Leistungen. zeigen die besondere Bedeutung der spezifischen Wärmekapazität des Wassers an geeigneten Bei- spielen aus Natur und Technik auf.	
bestimmen die auf diese Weise übertragene Energie quantitativ.	•	berechnen die Anderung von Hö- henenergie und innerer Energie in Anwendungsaufgaben.					
 nutzen die Gleichung für die kinetische Energie zur Lösung einfacher Aufgaben formulieren den Energieerhaltungssatz in der Mechanik und nutzen ihn zur Lösung einfacher Aufgaben und Probleme. 	•	planen einfache Experimente zur Überprüfung des Energieerhal- tungssatzes, führen sie durch und dokumentieren die Ergeb- nisse.			•	nutzen ihr Wissen zum Bewerten von Risiken und Sicherheitsmaß- nahmen im Straßenverkehr.	

Idee: Inhalt des Buches als roter Faden für einen Unterricht in Klasse 9/10

KC Oberschule

Fachwissen	Erkenntnisgewinnung	Kommunikation	Bewerten				
Die Schülerinnen und Schüler							
beschreiben und berechnen die Umwandlung von potentieller Energie in kinetische Energie	 berechnen potentielle und kineti- sche Energie in Anwendungs- aufgaben. 		nutzen ihr Wissen zum Bewerten von Risiken und Sicherheits- maßnahmen im Straßenverkehr.				
und umgekehrt.	 nutzen den Energieerhaltungs- satz zur Berechnung von Ge- schwindigkeiten und Höhen. 						
 erklären an Beispielen den Wir- kungsgrad. 	 ermitteln den Wirkungsgrad an einfachen Beispielen. 	 recherchieren den Wirkungsgrad verschiedener Energiewandler. 	gen hinsichtlich ihres Wirkungs-				
 beschreiben Energieumwand- lungsketten unter Berücksichti- gung des Wirkungsgrades. 		 wechseln zwischen grafischer und sprachlicher Darstellungs- form. 	grades.				
 Identifizieren die Energiestromstärke / Leistung P als Maß für die pro Sekunde übertragene Energie. ermitteln die Energiestromstärke / Leistung in alltagsnahen Zu- 	 bestimmen die Energiestromstärke / Leistung an ausgewählten Beispielen. führen Messungen mit einfachen Energiemessgeräten durch. 	präsentieren ihre Ergebnisse sachgerecht und adressatenbe- zogen mit geeigneten Medien.	vergleichen die Leistung von Maschinen, Fahrzeugen und Ge- räten.				
sammenhängen.							

Idee: Inhalt des Buches als roter Faden für einen Unterricht in Klasse 9/10

KC Oberschule

- betrachten das Energieversorgungsnetz hinsichtlich Energiestrom und Wirkungsgrad.
- beschreiben Aufbau und Funktionsweise unterschiedlicher Kraftwerkstypen.
- vergleichen Möglichkeiten der Energieversorgung hinsichtlich ihrer Nachhaltigkeit.
- verwenden Energieflussdiagramme zur Erläuterung der Funktionsweise von Kraftwerken.
- recherchieren selbständig in verschiedenen Medien und referieren über das Energieversorgungsnetz.
- erklären Kraftwerkstypen mithilfe von Aufbauschemata und Energieübertragungsdiagrammen.
- vergleichen Kraftwerkstypen hinsichtlich Wirkungsgrad, Umweltverträglichkeit und Nachhaltigkeit.
- bewerten die Möglichkeiten nachhaltiger Energieversorgung.

Erstes Fazit

Mit dem übergreifenden Kontext "Können wir unseren Energiebedarf durch regenerative Energien decken" können viele Inhalte der aktuellen Kerncurricula in der Sek I abgearbeitet werden.

Weitere Argumente?

- Agenda 2030, beschlossen 2015 von den Vereinten Nationen
- Umsetzung in Schulen durch BNE-Erlässe (Niedersachsen 01.06.2021)

MENSCHENWÜRDIGE Arbeit und Wirt-

4 HOCHWERTIGE BILDUNG

UND PRODUKTION

Bildung für nachhaltige Entwicklung (BNE) in Niedersachsen

Ziel von BNE ist es, Schülerinnen und Schüler zu einem selbstbestimmten, mitgestaltenden, verantwortungsbewussten und solidarischen Leben in der globalisierten Gesellschaft zu befähigen. Im Vordergrund steht die Förderung von zukunftsfähigem und transformativem Denken und Handeln. (...) Dabei werden ökologische, ökonomische, soziale, politische, kulturelle sowie ethische und religiöse Dimensionen berücksichtigt.

BNE ist eng verknüpft mit Konzepten wie Umweltbildung, Globalem Lernen, Demokratiebildung, interkultureller Bildung, Bildung zu nachhaltiger Mobilität, Verbraucherbildung, Friedenspädagogik etc. (...) Damit betrifft BNE die ganze Schule. (...)

Die strukturelle Verankerung von BNE im Unterricht (...) kann besonders gewinnbringend umgesetzt werden, wenn (...) die Auseinandersetzung im Unterricht ökologische, ökonomische, soziale, kulturelle, politische sowie ethische und religiöse Dimensionen miteinander verbindet.

(BNE-Erlass Niedersachsen)

Ausblick: Bildungsstandards (KMK, 2024)

Energie

- physikalische Größen: Energie, Leistung, Wirkungsgrad
- Energieformen: Bewegungsenergie, Lageenergie, elektrische Energie, thermische Ener-gie, Strahlungsenergie
- Energieumwandlung und Energieübertragung
- Energieerhaltung und Energieentwertung, auch quantitative Bilanzierung
- Zusammenhang zwischen Energie und Leistung, auch quantitative Betrachtungen
- nachhaltige Energieversorgung, insbesondere Energiespeicherung

Elektromagnetische Strahlung

- physikalische Größe: Temperatur, Wellenlänge
- Licht und Wärmestrahlung
- elektromagnetisches Spektrum
- Wechselwirkung von Strahlung und Materie
- Klimaphysik, insbesondere Strahlungshaushalt der Erde (Rückstrahlvermögen, mögliche Kippelemente, natürlicher und anthropogener Treibhauseffekt)

Ausblick: Bildungsstandards (KMK, 2024)

"Beschäftigung mit der Lösung des Klimaproblems"

Energie

- physikalische Größen: Energie, Leistung, Wirkungsgrad
- Energieformen: Bewegungsenergie, Lageenergie, elektrische Energie, thermische Ener-gie, Strahlungsenergie
- Energieumwandlung und Energieübertragung
- Energieerhaltung und Energieentwertung, auch quantitative Bilanzierung
- Zusammenhang zwischen Energie und Leistung, auch quantitative Betrachtungen
- nachhaltige Energieversorgung, insbesondere Energiespeicherung

Elektromagnetische Strahlung

- physikalische Größe: Temperatur, Wellenlänge
- Licht und Wärmestrahlung
- elektromagnetisches Spektrum
- Wechselwirkung von Strahlung und Materie
- Klimaphysik, insbesondere Strahlungshaushalt der Erde (Rückstrahlvermögen, mögliche Kippelemente, natürlicher und anthropogener Treibhauseffekt)

Erörterung der Ursachen und Folgen des Klimawandels, "Beschäftigung mit dem Problem"

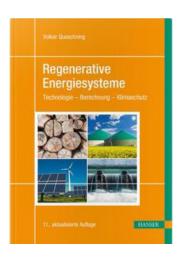
Nationale Klimaschutzziele Deutschland (§3 Klimaschutzgesetz)

"Bis zum Jahr 2045 werden die Treibhausgasemissionen so weit gemindert, dass Netto-Treibhausgasneutralität erreicht wird. Nach dem Jahr 2050 sollen negative Treibhausgasemissionen erreicht werden."

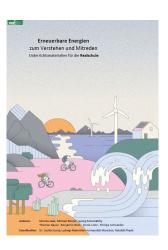
Zusammenfassung didaktische Hintergründe

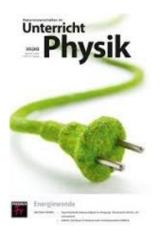
- Mit dem übergreifenden Kontext "Können wir unseren Energiebedarf durch regenerative Energien decken" können viele Inhalte der aktuellen Kerncurricula in der Sek I abgearbeitet werden.
- Der Kontext steuert in die Richtung von BNE.
- Der Kontext unterstützt konkret eine Bildung im Sinn der nationalen Klimaschutzziele.

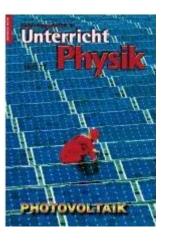

Zur Unterrichtsentwicklung


- Seminar "Elemente modernen Physikunterrichts" im WS 2022-23
- Vortragsreihe von Studierenden an SuS im 2. Halbjahr 2023-23
- erster Unterrichtsgang im 2. Halbjahr 2023-24 in vier 10. Klassen
- überarbeiteter Unterricht im 2. Halbjahr 2024-25 in weiteren vier 10. Klassen;
 neu: Strahlungsgleichgewicht und Treibhauseffekt

Quellen zur Unterrichtsentwicklung







Material der LMU München unter www.klimawandel-schule.de

Vorstellung einiger Unterrichtselemente

Dabei gilt:

- Viele Experimente später live in der Materialbörse!
- Ausgearbeitetes Unterrichtsmaterial vorhanden (noch Umstrukturierungsarbeiten bis zu den Herbstferien)
- Informationen zur möglichen Anschaffung von Materialien

Was ist eine "Kilowattstunde"?

tergrund:

ihne Energie ist unser derzeitiger Lebensstandard nicht denkbar. Energie nutzen wir im Haushait, damit warm und heil ist und für eine Vielsban leichtrischer Geräte. Doch nicht nur das: Das Auto benötigt, Krafstet enauso wie Busse, Schiffe oder Flugzeuge. Schulen, Krankenhäuser oder andere Einrichtungen müss eleuchtet und beheitt werden und auch industrie und Unternehmen benötigen Energie, um Produi erzustellen, die zu unserem Leben gehören. Doch wie viel Energie ist das eigentlich?

Alles zusammen – also die gesamte Energie, die in Deutschland im Jahr 2023 umgestett wurde – beziffert das Bundesamt für Energiewrischant auf eine Menge von 10 630 000 000 000 000 000 000 loule oder 10.63 Exajoule. Diese große Zahl wird etwas kleiner, wenn man sie statt in "Joule" in der größeren Einheit "Kilowatstunde" (kWh) angibt. Richtig anschallich wird sie aber erst, wenn man sie in die Energiemenge umrechnet, die geder von uns pro Tag benötigt. Das sind 101 kWh.

Aufgaben:

 Bestätige die Angabe E (pro Person und Tag) = 101 kWh durch eine Umrechnung. Dabei gilt: 1 kWh = 3 600 000 J. Gehe von einer Einwohnerzahl in Deutschland von 80 000 000 aus.

Erinneru

nmicrung. Ier Energiestrom P giht an welche Energie nro Zeiteinheit ühertragen wird. Die Einheit ist. Watt" (V

 $P = \frac{E}{I}$ 1 Watt = $\frac{I \text{ Joule}}{I}$ 1 W = 1

Neu: Formt man die Formel zu $E=P\cdot t$ um, kann die insgesamt nach einer Zeit t umgewandelte Energienenge E berechnet werden. Neben der Einheit Joule ist hier die Einheit 1 kWh ("Kilowattstunde") üblich.

Bei einem dauerhaften Energiestrom von $1000\,\mathrm{W}=1\,\mathrm{kW}$ wird innerhalb einer Stunde eine Energie von $1\,\mathrm{kWh}$ umgesetzt: $E=P\cdot t=1\,\mathrm{kW}\cdot 1h=1\,\mathrm{kWh}$

Beispiel:

Als durchschnittlicher Radfahrer liefert man einen Energiestrom von $P=100~\rm W$. Berechne die umgesetzte Energiemenge, wenn man $t=10~\rm h$ radelt.

Unterricht zum Klimawandel – Arbeitsblatt

- 1. Was ist eine kWh?
- 2. Energiebereitstellung und –nutzung in Deutschland
- 3. Umstellung der Energieversorgung in Deutschland, Umgang mit großen Zahlen
- 4. Wiederholung von Größen und Messprinzipien der Elektrizitätslehre
- 5. Untersuchung von Solarzellen I, Einführung des Wirkungsgrads
- 6. Untersuchung von Solarzellen II, Abhängigkeit vom Winkel (optional)
- 7. Energieertrag durch Photovoltaik
- 8. Energie durch Wasser (E = mgh)
- 9. Energieertrag durch Wasser
- 10. Energie durch Wind $(E = 1/2 \cdot mv^2)$
- 11. Energieertrag durch Wind
- 12. Energie durch Biomasse
- 13. Energie durch Geothermie, Wärmepumpe
- 14. (Energiespeicherung)

- 1. Was ist eine kWh?
- 2. Energiebereitstellung und –nutzung in Deutschland
- 3. Umstellung der Energieversorgung in Deutschland, Umgang mit großen Zahlen
- 4. Wiederholung von Größen und Messprinzipien der Elektrizitätslehre
- 5. Untersuchung von Solarzellen I, Einführung des Wirkungsgrads
- 6. Untersuchung von Solarzellen II, Abhängigkeit vom Winkel (optional)
- 7. Energieertrag durch Photovoltaik
- 8. Energie durch Wasser (E = mgh)
- 9. Energieertrag durch Wasser
- 10. Energie durch Wind $(E = 1/2 \cdot mv^2)$
- 11. Energieertrag durch Wind
- 12. Energie durch Biomasse
- 13. Energie durch Geothermie, Wärmepumpe
- 14. (Energiespeicherung)

- Was ist eine kWh?
- 2. Energiebereitstellung und –nutzung in Deutschland
- 3. Umstellung der Energieversorgung in Deutschland, Umgang mit großen Zahlen
- 4. Wiederholung von Größen und Messprinzipien der Elektrizitätslehre
- 5. Untersuchung von Solarzellen I, Einführung des Wirkungsgrads
- 6. Untersuchung von Solarzellen II, Abhängigkeit vom Winkel (optional)
- 7. Energieertrag durch Photovoltaik
- 8. Energie durch Wasser (E = mgh)
- 9. Energieertrag durch Wasser
- 10. Energie durch Wind $(E = 1/2 \cdot mv^2)$
- 11. Energieertrag durch Wind
- 12. Energie durch Biomasse
- 13. Energie durch Geothermie, Wärmepumpe
- 14. (Energiespeicherung)

- 1. Was ist eine kWh?
- 2. Energiebereitstellung und -nutzung in Deutschland
- 3. Umstellung der Energieversorgung in Deutschland, Umgang mit großen Zahlen
- 4. Wiederholung von Größen und Messprinzipien der Elektrizitätslehre
- 5. Untersuchung von Solarzellen I, Einführung des Wirkungsgrads
- 6. Untersuchung von Solarzellen II, Abhängigkeit vom Winkel (optional)
- 7. Energieertrag durch Photovoltaik
- 8. Energie durch Wasser (E = mgh)
- 9. Energieertrag durch Wasser
- 10. Energie durch Wind $(E = 1/2 \cdot mv^2)$
- 11. Energieertrag durch Wind
- 12. Energie durch Biomasse
- 13. Energie durch Geothermie, Wärmepumpe
- 14. (Energiespeicherung)

1. Stunde: Was ist eine kWh?

How much energy does it take to toast a slice of bread?

Robert schafft P = 700 W

$$E = P \cdot t = 1 \text{ kW} \cdot 1\text{h} = 1 \text{ kWh}$$

Was schaffen wir?

1. Stunde: Was ist eine kWh?

Fazit:

- $E = P \cdot t = 0.1 \text{ kW} \cdot 10 \text{h} = 1 \text{ kWh}$
- 1 kWh ist diejenige Energiemenge, die ein Radler an einem 10stündigen Radeltag bereitstellen könnte.

Primärenergiebedarf: 101 kWh pro Tag und pro Person

- 101 Radfahrer
- 10 Liter Öl
- 13 kg Holzkohle
- 40 kg CO₂ (20 m³ 2000 Ballons)

1. Stunde: Was ist eine kWh?

Lernziele:

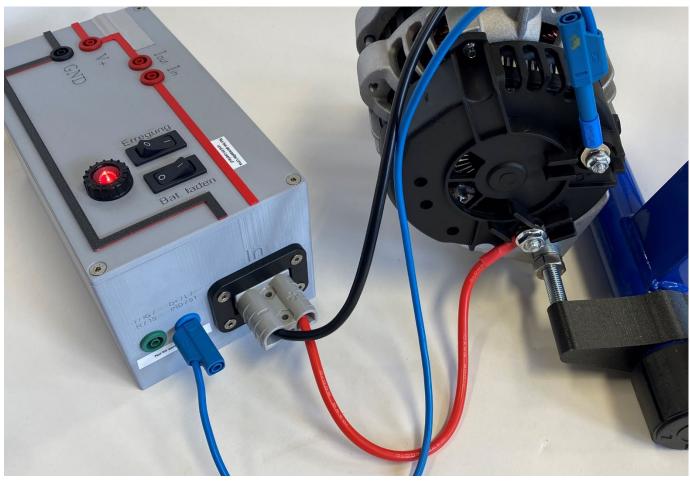
- Veranschaulichung der Energiemenge 1 kWh
- Umgang und Berechnungen mit der Formel $E = P \cdot t$
- Unterscheidung Energiestrom/ Energiemenge
- Verknüpfung von Zahlenangaben mit anschaulichen Bedeutungen

Energiefahrrad – kostengünstig selbst bauen (Masterarbeit K. Krause)

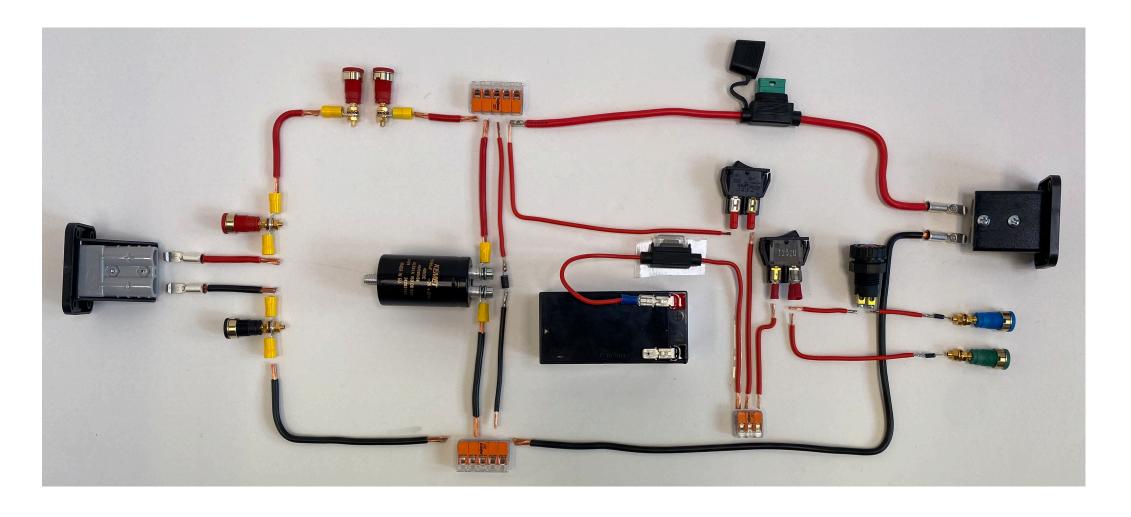
Professioneller Ökotrainer

Teile	Kosten
Trainer	450
Power Analyzer	275
Spannungsstabilisierung	154
Wechselrichter (110)	50
Gesamt:	929

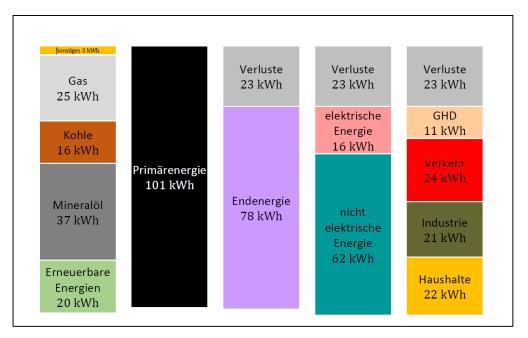
Selbstbau


Teile	Kosten
Trainer und Mechanik	70
Lichtmaschine	100
Elektrische Teile, Filament	160
Wechselrichter	50
Gesamt:	380

- kein Schweißen
- möglichst einfacher Zusammenbau (evaluiert)
- Spezialteile aus 3D-Drucker
- auch gut geeignet für Elektrizitätslehre, U = P/I

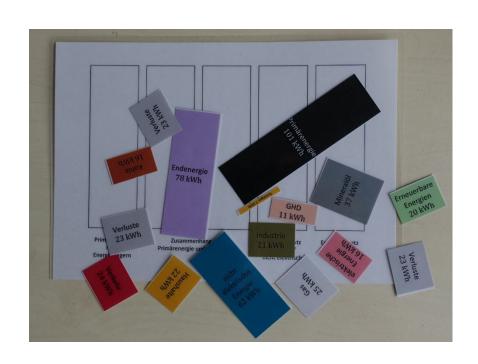

Energiefahrrad – kostengünstig selbst bauen (Masterarbeit K. Krause)

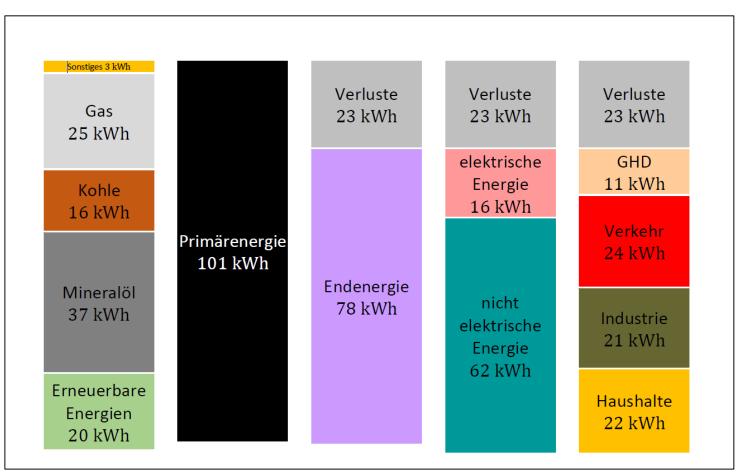
Energiefahrrad – kostengünstig selbst bauen (Masterarbeit K. Krause)



2. Stunde: Energiebereitstellung und -nutzung in Deutschland

Lernziele:


- Kennenlernen von Fachbegriffen: Primärenergie, Endenergie, Sektoren, ...
- Kenntnisse von verschiedenen regenerativen Energien
- Beurteilung von Aussagen zum Fortschritt der Transformation



2. Stunde: Energiebereitstellung und -nutzung in Deutschland

2. Stunde: Energiebereitstellung und –nutzung in Deutschland

- 2. Steffi und Tobi unterhalten sich über den Artikel.
- a) Beschreibe, was in dem Artikel mit "Stromverbrauch" gemeint ist. Beziehe die Energiesäulen ein.
- b) Ermittle mithilfe der Daten in den Windenergieanlagen an Land steuerten am mo Säulendiagrammen und der Information im Artikel, ob regenerative Energien grundsätzlich nur elekrische Energie liefern.

Stromverbrauch zum Jahresbeginn

Jede zweite Kilowattstunde "grün"

Stand: 28.04.2023 08:53 Uhr

Rund 50 Prozent des Stromverbrauchs in Deutschland konnten in den ersten drei Monaten des Jahres durch Erneuerbare Energien gedeckt werden. Windenergieanlagen an Land steuerten am meisten bei.

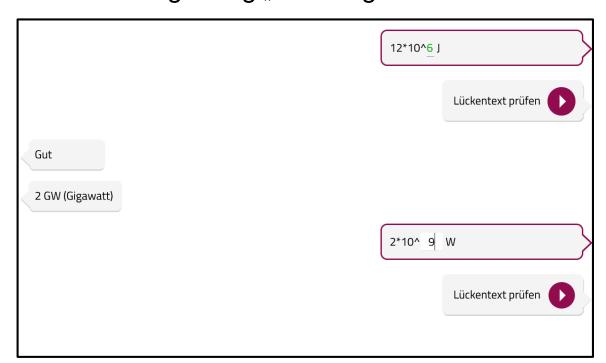
tagesschau.de, 28.04.2024

c) Beurteile die Aussagen der beiden.

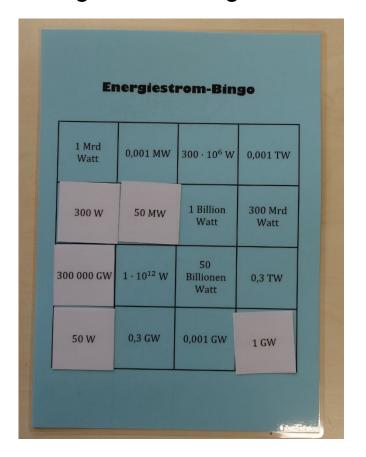
Ich weiß gar nicht, warum viele beim Erreichen der Klimaziele so pessimistisch sind.

Das verstehe ich auch nicht. Wenn wir jetzt schon die Hälfte unseres gesamten Energiebedarfs aus regenerativen Energien decken, dann wird es doch wohl leicht sein, bis 2045 auch den Rest zu schaffen.

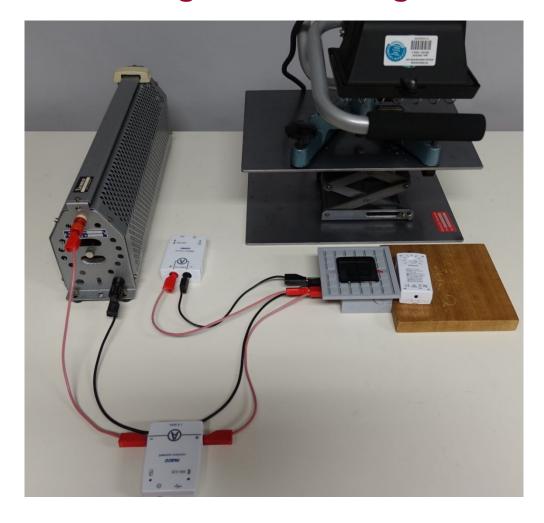
3. Stunde: Die Umstellung der Energieversorgung in Deutschland

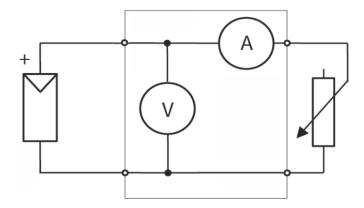

Ausschnitt aus der Bewertungstabelle

Kriterium	Beurteilung			Photo-	Wind	Wind	Wasser-
	hoch/zentral	mittel	gering	voltaik	onshore	offshore	energie
Potenzial	wesentlicher Beitrag	mittlerer Beitrag	geringer Beitrag				
Welchen Beitrag kann die	> 15 kWh	5 – 15 kWh pro Tag und	< 5 kWh pro Tag und				
Energie liefern?	pro Tag und Person	Person	Person				
Elektrische Energie Kann elektrische Energie bereitgestellt werden?	ja	grundsätzlich ja, aberhoher Aufwand oder niedriger Wirkungsgrad	nein				
Wärme Kann Wärme zum Heizen bereitgestellt werden?	ja	ja, durch Nutzung elektrischer Energie	nein				
Verkehr (Schiff/Flugzeug) Kann hochwertiger Treibstoff bereitgestellt werden?	ja, flüssige Kraftstoffe	ja, über elektrische Energie	nein				
Wirkungsgrad	> 50 %	10 % bis 50 %	< 10 %				
Verfügbarkeit Ist die Energie immer verfüg- bar oder nur manchmal?	immer, unabhängig vom Wetter oder der Tageszeit	abhängig von äußeren Fak- toren, aber planbar	nicht planbar				
Speicherfähigkeit Kann die Energie gespeichert werden?	ja	mit Aufwand	nein				

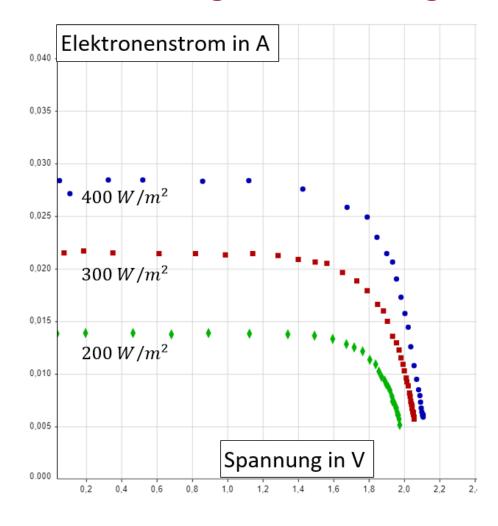

3. Stunde: Umgang mit großen Zahlen (wissenschaftliche Schreibweise)

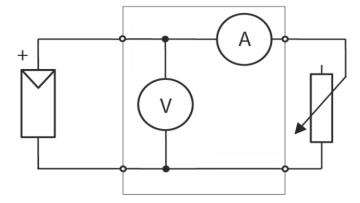
Selbstlernumgebung "Learningsnack"

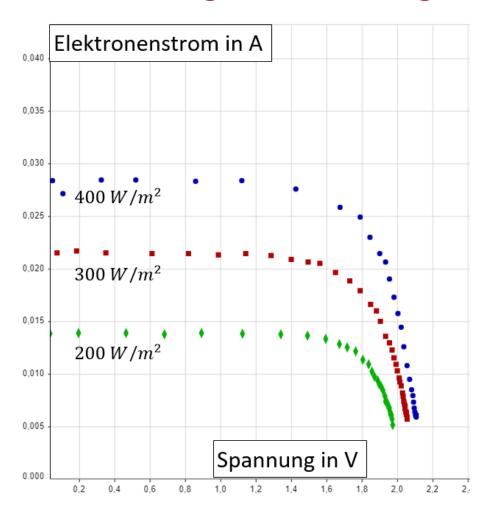


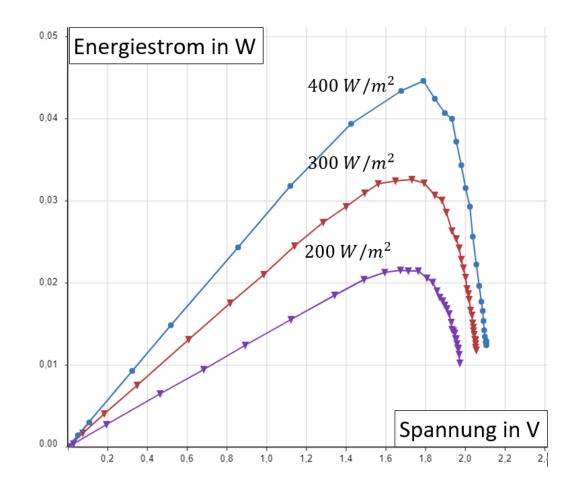


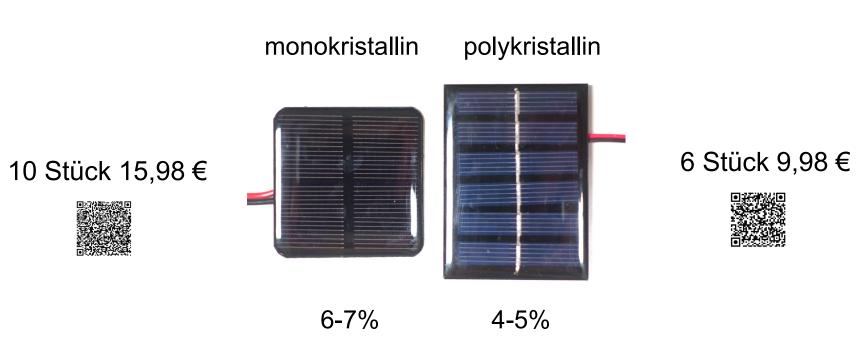
Energiestrom-Bingo





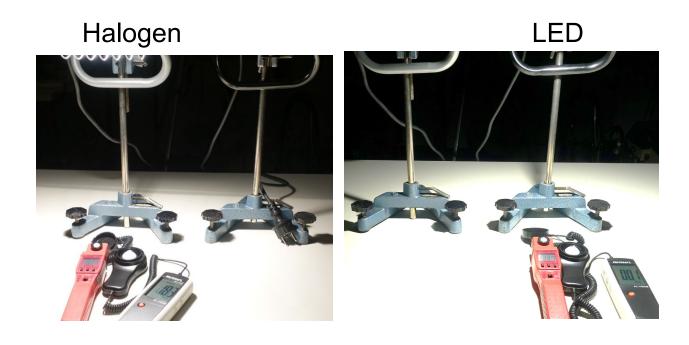




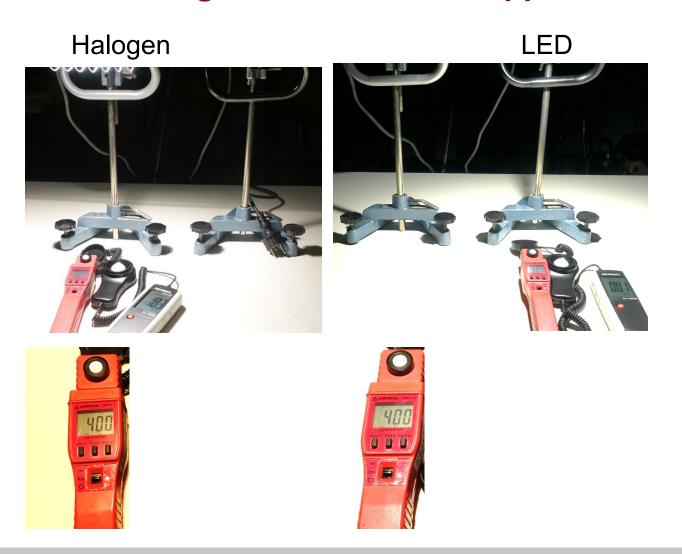


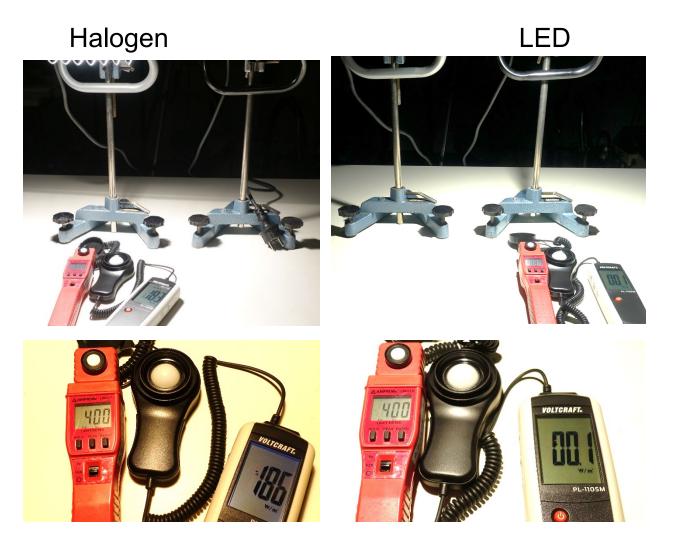
$$\eta = \frac{\textit{auftreffender Strahlungsenergiestrom}}{\textit{abgegebener elektrischer Energiestrom}}$$

Ergebnis:


Bekannt: Luxmeter misst Beleuchtungsstärke in Lux

Weniger bekannt: Pyranometer misst Intensität in W/m² (z. B. 50 €)





Fazit:

LED-Lampen sind für die Versuche mit der Solarzelle ungeeignet.

Halterung aus dem 3D-Drucker:

7. Stunde: Ertrag durch Photovoltaik

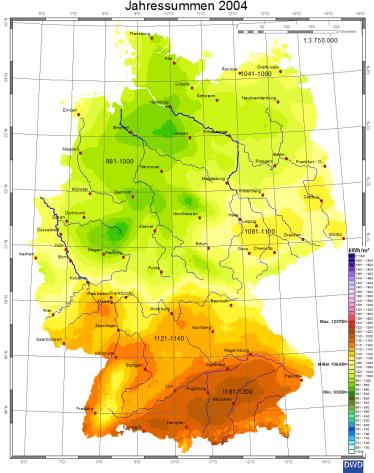
Internetrecherche:

- mittlere Strahlung in Deutschland: $1064 \frac{\text{kWh}}{\text{m}^2}$
- verfügbare Dachfläche A = 2344 km²
- Wirkungsgrad: $\eta = 20 \%$

Rechnung:

Energieertrag pro Jahr in Deutschland:

$$E = 2344 \cdot 10^6 \text{ m}^2 \cdot 1064 \frac{\text{kWh}}{\text{m}^2} \cdot 0.2 = 0.50 \cdot 10^{12} \text{ kWh}$$


Energieertrag pro Tag und Person:

$$E = \frac{0.50 \cdot 10^{12} \text{kWh}}{80 \cdot 10^{6} \cdot 365} = 17 \text{ kWh}$$

Freiflächen: E = 26 kWh

Globalstrahlung in der Bundesrepublik Deutschland

Basierend auf Satellitendaten und Bodenwerte aus dem DWD-Messne

7. Stunde: Ertrag durch Photovoltaik - Beurteilung

#		

Kriterium	Beurteilung				Wind	
Kriterium	hoch/zentral	mittel	gering	voltaik	onshore	
Potenzial	wesentlicher Beitrag	mittlerer Beitrag	geringer Beitrag			
Welchen Beitrag kann die	> 15 kWh	5 — 15 kWh pro Tag und	< 5 kWh pro Tag und			
Energie liefern?	pro Tag und Person	Person	Person			
Elektrische Energie		grundsätzlich ja,				
Kann elektrische Energie	ja	aberhoher Aufwand oder	nein			
bereitgestellt werden?		niedriger Wirkungsgrad				
Wärme		io durch Nutzung				
Kann Wärme zum Heizen	ja	ja, durch Nutzung	nein			
bereitgestellt werden?		elektrischer Energie				
Verkehr (Schiff/Flugzeug)		ia übar alaktrisaba				
Kann hochwertiger Treib-	ja, flüssige Kraftstoffe	ja, über elektrische	nein			
stoff bereitgestellt werden?		Energie				
Wirkungsgrad	> 50 %	10 % bis 50 %	< 10 %			
Verfügbarkeit						
Ist die Energie immer verfüg-	immer, unabhängig vom	abhängig von äußeren Fak-	nicht planbar			
bar oder nur manchmal?	Wetter oder der Tageszeit	toren, aber planbar	·			
Speicherfähigkeit						
Kann die Energie gespeichert	ja	mit Aufwand	nein			
werden?	,					
Kosten	Kosten vergleichbar mit	Kosten etwas höher, aber	Kosten deutlich höher und			
Was kostet die Energie, ver-	heutigen Erwartungen:	tragbar:	kaum tragbar:			
glichen mit heutigen Prei-	Wärme: <6 Ct/kWh	Wärme: 6-12 Ct/kWh	Wärme: >12 Ct/kWh			
sen?	Elektrizität: <12 Ct/kWh	Elektrizität: 12-25 Ct/kWh	Elektrizität: >25Ct/kWh			

8./9. Stunde: Energie aus Wasser

- Bestätigung von E = mgh mit einem Wassergenerator
- Abschätzung des Energieertrags durch die Betrachtung der Regenmenge in Deutschland und das Höhenprofil

Erfahrungen, offene Fragen, Ausblick

- Interesse bei den Lernenden beobachtbar, zahlreiche Gesprächsanlässe über das Fach hinaus
- Rechnen ist schwierig, wird aber mit jeder Energieform besser
 - ➤ Ideen zur Entlastung
- stärkere experimentelle Ausrichtung wäre wünschenswert (Windenergie), aber: Zeitproblem

Ansprechpartner auch heute anwesend!

- Möglichkeit der Anbindung von Exkursionen (z. B. Klimakommune Saerbeck)
- fächerübergreifender Unterricht bietet sich an (Erdkunde, Politik)

Vielen Dank für Ihre Aufmerksamkeit!

.... und an:

Dorothea von Boehn-Neitzel

Thomas Kellermann

Corinna Helms

Paul Nagel

Lukas Köhl

Theresa Menke Zumbrägel

Chris Bachmann

Franziska Rocholz